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Abstract
The notion of low-noise channels was recently proposed and analysed in detail
in order to describe noise-processes driven by the environment (Hotta M,
Karasawa T and Ozawa M 2005 Phys. Rev. A 72 052334). An estimation
theory of low-noise parameters of channels has also been developed. In this
paper, we address the low-noise parameter estimation problem for the N-body
extension of the dissipative low-noise channels. We perturbatively calculate the
Fisher information of the output states in order to evaluate the lower bound of
the mean-square error of the parameter estimation. We show that the maximum
of the Fisher information over all input states can be attained by a factorized
input state in the leading order of the low-noise parameter. Thus, to achieve
optimal estimation, it is not necessary for there to be entanglement of the N
subsystems, as long as the true low-noise parameter is sufficiently small and
the channel is properly dissipative.

PACS numbers: 03.67.−a, 03.67.Hk, 03.67.Lx, 03.65.Ta

1. Introduction

Quantum channels or quantum operations [1] can be used to describe low-noise processes
of physical systems coupled weakly with the environment, instead of invoking complicated
Hamiltonians. We have introduced the notion of low-noise quantum channels �ε characterized
by one low-noise parameter ε in an earlier paper [2]. Low-noise quantum channels are very
useful for many physical applications, including relaxation processes driven by a thermal bath,
decoherence of quantum computers, and rare processes in elementary particle physics.

Determining of the order of the low-noise parameter ε is often crucial in various fields.
For example, in elementary particle physics, low-noise signals may be generated by some new
physical processes and the source characterization of the low noise can give us information on
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the structure of the new physics theory3. In developing scalable quantum computers, it is also
important to determine the order of low noise, as it must be eliminated to maintain quantum
coherence.

In [2], we present an estimation theory for noise parameters in low-noise quantum
channels, which we briefly review here. A fundamental quantity in the theory is the Fisher
information of the output state of the channel �ε . Consider an input state ρin for the output
state ρ = ρout(ε), obtained by

ρout(ε) = �ε[ρin]. (1)

The symmetric logarithmic derivative L is defined by

∂ερ = 1
2 (Lρ + ρL) , L† = L. (2)

The Fisher information of the output state is defined by

J = Tr[ρL2]. (3)

It is well known that the inverse of J is the lower bound of the mean-square error of unbiased
estimators [4, 5]. The maximum of J over all the input states can be attained from a pure input
state [6]. Hence, in later discussions, we focus on pure input states. The Fisher information of
output states for an ancilla-extension of the low-noise channel �ε ⊗ idA was calculated, taking
account of entanglement between the original system S and the ancilla system A. For a qubit
system, a characteristic parameter was defined associated with a general low-noise channel,
and the channels for which the prior entanglement increases the output Fisher information
in terms of the range of that parameter were characterized. The optimal input pure states
were discussed for general low-noise channels �ε . We introduced an enhancement factor,
representing the ratio of the Fisher information of the ancilla-assisted estimation to that of the
original system, and showed that it is always upper bounded by 3/2.

We define here an N-body-extended channel. We take N identical systems, with the state
space given by H⊗N , where H is the state space of the original system. Suppose that a quantum
channel �θ with an unknown parameter θ acts on a state of H. The N-body extension of �θ is
defined by �⊗N

θ . The estimation problem of �⊗N
θ is to find the optimal output measurements

and input states. This N-body-extended problem is nontrivial. Using collective measurements
of the composite system and entangled input states, the problem cannot be simply reduced
to the original estimation problem of �θ . Solutions for optimizing the input states can be
obtained only by specific models [7, 13], and a complete solution to the problem remains to
be determined. For unitary channel estimations [13], the optimal input states of the estimation
are pure states strongly entangled among the N subsystems. Compared with factorized input
states, difficult controls are required to set up such entangled states in real experiments.
If optimization by factorized input states is possible for a specific class of channels, the
physical realization of the entangled input states for the channels is not important. For
example, it is known that factorized-input-state optimization is satisfied for a generalized Pauli
channel [7].

In this paper, we discuss the estimation theory of an N-body extended low-noise channel
�⊗N

ε , using its ancilla-extension. The ancilla-extended channel is given by �⊗N
ε ⊗ id, where

id is the identical channel of the ancilla system. As pointed out in [2], in order to maximize
the output Fisher information, it is sufficient to adopt an ancilla state space with dimensions
equal to that of the object system. Therefore, we can assume that the ancilla state space
is decomposed into N identical spaces. By taking an ancilla-extended low-noise channel

3 For example, such a low noise may be generated by CPT violation interactions in the flavour oscillation of kaon
systems. Related references are given in [3].
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Figure 1. Example of (�ε ⊗ idA)⊗N with N = 2. The initial state is transformed into an entangled
state by unitary operators U1, U2 and V . The non-ancilla subsystems go through a low-noise
channel �ε . A collective measurement M is made of the output state to estimate the low-noise
parameter ε.

�ε ⊗ idA, as analysed in [2], the channel �⊗N
ε ⊗ id can be regarded as (�ε ⊗ idA)⊗N . Hence,

we concentrate on the analysis of the estimation of (�ε ⊗ idA)⊗N . Figure 1 describes a typical
example of the channel with N = 2. An entangled input state for the channel is generated
from an initial factorized state by unitary operators U1, U2 and V . After the operation, each
of the non-ancilla subsystems goes through a low-noise channel �ε . The obtained output
state is measured by a collective measurement M in order to estimate ε. The true low-noise
parameter ε is generally small. Thus, only the analysis in the leading order of ε is important
for applications. Here we introduce the class of dissipative low-noise channels, for which the
leading order of the Fisher information is O(1/ε), and show that for the leading order of ε, the
maximum value of the output Fisher information can be attained by a factorized input state
for (�ε ⊗ idA)⊗N . This result is interesting because the number of characteristic parameters
of the low-noise channels is very large.

2. Brief review of low-noise channels

In this section, we give a brief review of low-noise channels parametrized by the non-negative
low-noise parameter ε [2]. The channels are defined in the Kraus representation as

�ε[ρ] =
∑

α

Bα(ε)ρB†
α(ε) + ε

∑
β

Cβ(ε)ρC
†
β(ε). (4)

The Kraus operators must satisfy the following conditions.
(i) The channel is a trace-preserving completely positive (TPCP) map:∑

α

B†
α(ε)Bα(ε) + ε

∑
β

C
†
β(ε)Cβ(ε) = 1S. (5)

(ii) Bα(ε) is analytic at ε = 0, giving the power series expansion

Bα(ε) = κα1S −
∞∑

n=1

N(n)
α εn (6)

in the neighbourhood of ε = 0, where κα and N(n)
α are coefficients and operators, respectively,

independent of ε.
(iii) κα satisfies∑

α

|κα|2 = 1. (7)

(iv) Cβ(ε) is analytic at ε = 0, giving the power series expansion

Cβ(ε) = Mβ +
∞∑

n=1

M
(n)
β εn, (8)

where Mβ and M
(n)
β are operators independent of ε.
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From condition (iii) (equation (7)), the channel automatically reduces to the identical
channel in the noise-vanishing limit:

lim
ε→+0

�ε = idS. (9)

All physical channels should be TPCP maps and any TPCP map has Kraus representations.
Thus condition (i) naturally applies to low-noise channels. Conditions (ii) and (iv) simply
imply that the channel shows nonsingular behaviour near ε = 0. Therefore, taking proper
limits of weak coupling with environment, physical processes induced by the environment can
be always described by the low-noise channels.

We say a low-noise channel is dissipative if Mβ �= 0, where Mβ is the lowest order
operator of Cβ(ε) defined by equation (8). This class includes the depolarizing channel and
the amplitude-damping channel [2]. For dissipative low-noise channels, the output Fisher
information corresponding to an input state |φ〉〈φ| is evaluated [2] in the leading order of ε as

J = 1

ε

∑
β

[〈φ|M†
βMβ |φ〉 − |〈φ|Mβ |φ〉|2] + O(ε0). (10)

In the next section, we may apply this formula to calculate the output Fisher information of
an N-body extended dissipative low-noise channel.

We consider an ancillary system A and a composite system S +A. The low-noise channels
are trivially extended as �ε ⊗ idA. For an input state |
〉〈
| of �ε ⊗ idA, the output Fisher
information JS+A is evaluated in the leading order as

JS+A = 1

ε

∑
β

[
Tr

[
ρ̃M

†
βMβ

] − |Tr[ρ̃Mβ]|2] + O(ε0), (11)

where ρ̃ is the reduced state of S given by

ρ̃ = TrA[|
〉〈
|]. (12)

It should be stressed that ρ̃ can describe any possible state of the original system S.

3. (Γε ⊗ idA)⊗N channel estimation

In general, a quantum channel � possesses a Kraus representation

�[ρ] =
∑

α

AαρA†
α.

Using the Kraus representation, �⊗N can be written as

�⊗N [ρ(N)] =
∑

α1α2···αN

Aα1 ⊗ Aα2 ⊗ · · ·AαN
ρ(N)A†

α1
⊗ A†

α2
⊗ · · · A†

αN
.

Similarly the Kraus operators of � ⊗ idA can be derived to be Aα ⊗ 1A. Thus the N-body
extension of the dissipative low-noise channel (�ε ⊗ idA)⊗N can be written as

(�ε ⊗ idA)⊗N [ρ(N)] =
∑
α′

B
(N)
α′ (ε)ρ(N)B

(N)†
α′ (ε) + ε

∑
iβ ′

C
(N)
i,β ′ (ε)ρ

(N)C
(N)†
i,β ′ (ε),

where the Kraus operators are expressed by

B
(N)
α′ (ε) := B(N)

α1···αN
(ε) =

(
N∏

i=1

κi

)
1(N) ⊗ 1(N)

A + O(ε),

C
(N)
1,β ′(ε) := C

(N)
1,β1β2···βN

(ε) = (
Mβ1 ⊗ 1A

) ⊗ (
κβ2 1S ⊗ 1A

) ⊗ · · · (κβN
1S ⊗ 1A

)
+ O(ε), (13)
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C
(N)
2,β ′(ε) := C

(N)
2,β1β2···βN

(ε) = (
κβ1 1S ⊗ 1A

) ⊗ (
Mβ2 ⊗ 1A

) ⊗ · · · (κβN
1S ⊗ 1A

)
+ O(ε), (14)

and so on.
From equation (10), the output Fisher information for the input pure state |
(N)〉〈
(N)|

can be evaluated in the leading order of ε as

J (N) = 1

ε

N∑
i=1

∑
β ′

[〈
(N)|C†
i,β ′Ci,β ′ |
(N)〉 − |〈
(N)|Ci,β ′ |
(N)〉|2] + O(ε0).

Using
∑

βi
|κβi

|2 = 1, the expression can be simplified to

J (N) = 1

ε

N∑
i=1

∑
β

[〈
(N)|M†
i,βMi,β |
(N)〉 − |〈
(N)|Mi,β |
(N)〉|2] + O(ε0),

where the operators Mi,β are given by

M1,β = (Mα ⊗ 1A) ⊗ (1S ⊗ 1A) ⊗ · · · (1S ⊗ 1A),

M2,β = (1S ⊗ 1A) ⊗ (Mα ⊗ 1A) ⊗ · · · (1S ⊗ 1A),

and so on. Now we define a reduced state ρS+A
i at the ith site:

ρS+A
i = Tr[i][|
(N)〉〈
(N)|],

where Tr[i] is the trace operation in terms of the N − 1 sites except the ith site. The output
Fisher information can then be described by the reduced states as follows:

J (N) = 1

ε

N∑
i=1

∑
β

[
Tr

[
ρS+A

i

(
M

†
β ⊗ 1A

)
(Mβ ⊗ 1A)

] − ∣∣Tr
[
ρS+A

i (Mβ ⊗ 1A)
]∣∣2 ]

+ O(ε0).

By performing a trace operation on the ancilla system at the ith site, we define a reduced state
of the ith subsystem as

ρ̃i = TrA
[
ρS+A

i

]
.

Finally we obtain an expression for the output Fisher information:

J (N) = 1

ε

N∑
i=1

∑
β

[
Tr

[
ρ̃iM

†
βMβ

] − |Tr[ρ̃iMβ]|2] + O(ε0). (15)

Note that equation (15) is expressed by the site-sum (
∑

i ) of independent contributions
of the output Fisher information in equation (11). Hence, by simultaneously maximizing
the output Fisher information at each site, J (N) trivially becomes maximum. We use the
optimal input state |
opt〉〈
opt| for the single-system channel �ε ⊗ idA. The state |
opt〉〈
opt|
maximizes the output Fisher information in equation (11). A factorized input state given by∣∣
(N)

opt

〉 〈



(N)
opt

∣∣ = (|
opt〉〈
opt|)⊗N

clearly gives maximum J (N). The reduced states ρ̃i,opt are given by

ρ̃i,opt = TrA[|
opt〉〈
opt|],
and maximize each site output Fisher information defined by equation (11). The maximum
value is given by

J (N)
[∣∣
(N)

opt

〉 〈



(N)
opt

∣∣] = NJS+A[|
opt〉〈
opt|], (16)

where JS+A[|
opt〉〈
opt|] is the output Fisher information for �ε ⊗ idA with input |
opt〉〈
opt|.
Therefore the prior entanglement of the N subsystems cannot increase the Fisher information
to larger than NJS+A[|
opt〉〈
opt|].

This result implies that in order to attain an optimal estimation, it is sufficient to carefully
arrange the entanglement between S and A, if the state |
opt〉 is an entangled state of S+A. It is
not necessary to arrange entanglement of the N subsystems or make collective measurements
over the subsystems, as long as dissipative low-noise channels are concerned.
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